Задающий автогенератор на туннельном диоде. Автогенератор на туннельном диоде

Туннельный диод - это специальный диод, характеристики которого отличаются от характеристик любого обычного диода или стабилитрона.

Как обычный диод, так и стабилитрон являются очень хорошими проводниками, имея прямое смещение, но ни один из них не проводит хорошо ток в состоянии обратного смещения (исключение составляет область пробоя). Но в материале туннельного диода имеются присадки в гораздо большем объеме, нежели в обычном диоде, а его P-N переход очень узкий. Туннельный диод в силу того, что имеет большое количество присадок и очень узкий P-N переход, исключительно хорошо проводит ток в обе стороны.

Принцип действия туннельного диода

Потенциал, который необходим для того, чтобы заставить туннельный диод выступать в роли проводника, будь то в режиме прямого или обратного смещения, очень невелик, обычно этот потенциал находится в диапазоне милливольт. Именно поэтому туннельные диоды известны как приборы с низким сопротивлением. Они очень слабо противодействуют движению тока в цепи.

Самой уникальной особенностью туннельных диодов является их соотношение напряжение-ток, когда они имеют прямое смещение. Когда туннельный диод имеет прямое смещение (от точки А до точки В на графике) при увеличении напряжения, ток также растет до определенной величины. Как только это значение оказывается достигнутым, дальнейшее повышение напряжения при прямом смещении заставляет ток снижаться до минимального значения (от точки В до точки С). В области, которая находится на графике между максимальным и минимальным потоками тока, туннельный диод имеет отрицательное сопротивление. В этой области отрицательного сопротивления ток, идущий через туннельный диод, фактически снижается при повышении напряжения. Происходит прямо противоположное обычному соотношению напряжение ток. Однако, когда напряжение за точкой С повышается, то данный прибор демонстрирует обычное соотношение напряжения и тока.

В обычных условиях туннельные диоды работают в области своего отрицательного сопротивления. В данной области незначительное уменьшение напряжения включает этот прибор, а небольшое повышение - выключает его. В качестве такого своеобразного выключателя туннельный диод может использоваться либо как генератор, либо как высокоскоростной выключатель: специфическая особенность прибора, низкое сопротивление, позволяет почти мгновенно изменять внутреннее сопротивление. Туннельные диоды могут также использоваться в качестве усилителей, где изменения в подаваемом напряжении в сторону повышения, вызывают пропорционально более значительные изменения тока в цепи.

Полупроводниковые диоды достаточно редко используются в качестве основных элементов генераторных и усилительных узлов. Являясь в большинстве своем чисто пассивными компонентами, они просто не могут выступать в роли источника тока или напряжения, необходимых для любого генератора или усилителя. Однако существует достаточно немногочисленный ряд случаев, когда при применении полупроводниковых диодов определенных типов (туннельные диоды , диоды Ганна , лавинно-пролетные диоды , параметрические диоды) возможно построение диодных усилительных и генераторных схем.

Такие полупроводниковые приборы как: туннельные диоды , диоды Ганна , лавинно-пролетные диоды объединяет одно свойство - наличие на ВАХ прибора при определенных условиях участка с отрицательным дифференциальным сопротивлением. В каждом из названных приборов физические эффекты, обусловливающие появление такого участка различны. В туннельном диоде - это резкий спад туннельного эффекта при росте напряженности электрического поля в полупроводнике выше некоторого критического значения, в диоде Ганна - особенности зонной структуры арсенида-галлия, в лавинно-пролетном диоде - специфика лавинного пробоя при высоких частотах приложенного напряжения. Следует отметить, что названные случаи не являются единственными. Примером может служить широко известный и популярный в 30-х гг. кристадин Лосева , также представлявший собой полупроводниковый диод введенный в особый режим пробоя.

На сегодняшний день набольшее распространение получили диодные автогенераторы диапазона СВЧ. В них используются диоды Ганна и лавинно-пролетные диоды . При определенных условиях такие генераторы могут быть преобразованы в усилители и использоваться для резонансного усиления СВЧ сигналов. Однако ввиду повышенного уровня шумов и практической нерациональности усилители на диодах Ганна и лавинно-пролетных диодах применяются крайне редко.

Особый вид усилительных устройств диапазона СВЧ - это т.н. параметрические усилители . Они строятся на основе специальных параметрических диодов . Принцип работы таких усилителей очень близок к тому, как работают описанные выше диодные смесители. На параметрический диод, также как и в смесителях, подается два сигнала. При определенном согласовании этих сигналов и правильном выборе режима работы диода удается на нелинейной проводимости или емкости диода осуществить перераспределение мощности падающих сигналов в пользу одного из них (полезного). Одновременно возможно и преобразование частоты этого сигнала. Параметрические усилители диапазона СВЧ очень сложны в настройке и достаточно нестабильны. Их основное достоинство - уникально низкий уровень шумов. Поэтому они чаще всего используются в радиотелескопах и системах дальней космической связи.

Наибольший интерес и практическую ценность могут представлять туннельные диоды . Генераторные и усилительные устройства на их основе могут быть использованы в радиоприемниках, радиомикрофонах, измерительной аппаратуре и т.п.

Упрощенная схема автогенератора на туннельном диоде представлена на рис. 3.6-42.

Рис. 3.6-42. Упрощенная схема автогенератора на туннельном диоде

Так как на ВАХ туннельного диода имеется участок с отрицательным сопротивлением устойчивым по напряжению, то при подключении к нему параллельного колебательного контура он может генерировать. При этом отрицательное сопротивление диода будет компенсировать потери, и в контуре могут возникнуть и поддерживаться незатухающие колебания. Современные туннельные диоды могут генерировать на частотах до 1 ГГц и более. Однако из-за небольшой величины участка ВАХ диода с отрицательным сопротивлением мощность, отдаваемая им на любых частотах, составляет доли милливатт. Чтобы форма генерируемых колебаний не искажалась, как правило, применяют частичное включение диода в контур генератора. Основным условием генерации является превышение величины сопротивления потерь контура над величиной отрицательного сопротивления туннельного диода. Учитывая, что параллельное сопротивление потерь в реальных колебательных контурах значительно превышает отрицательное сопротивление туннельного диода, используется частичное включение диода в контур (через отвод катушки).

На внутреннем сопротивлении источника смещения будет выделяться часть мощности генерируемых колебаний, поэтому оно должно быть как можно меньше. Поскольку требуемая величина напряжения смещения очень мала (например, для германиевых туннельных диодов порядка 0,1...0,15 В), питание туннельных диодов обычно осуществляется от делителя напряжения (рис. 3.6-43). Однако это может привести к неэкономному расходованию мощности источника питания (что важно для сверхминиатюрных устройств). Поэтому для питания туннельных диодов следует применять источники с возможно более низким выходным напряжением. Выходное сопротивление делителя напряжения выбирают в пределах 5...10 Ом, и только в устройствах, где требуется наибольшая экономичность, его можно повысить до 20...30 Ом. Отрицательное сопротивление туннельного диода должно превышать сопротивление делителя в 5...10 раз. Шунтировать столь малые сопротивления конденсаторами для уменьшения потерь высокочастотной энергии нецелесообразно, так как в ряде случаев это может привести к неустойчивой работе генератора, особенно, если его режим подбирался по максимуму отдаваемой мощности. Следует учитывать, что для стабильной работы генератора нужно поддерживать стабильное положение рабочей точки диода. При изменении величины питающего напряжения хотя бы на 10 % (например, из-за разрядки химического элемента питания) нормальная работа генератора может нарушиться. Иногда целесообразно использовать предварительно стабилизированное напряжение или применять в делителе нелинейные сопротивления (в верхнем плече стабилизирующие ток, а в нижнем - напряжение). Так, если в схеме автогенератора (рис. 3.6-43) вместо сопротивления R2 применить маломощный германиевый диод в прямом включении, как это показано на рис. 3.6-44, стабильность работы генератора улучшится, и при изменении напряжения питания в пределах 1...1,5 В никаких дополнительных регулировок не потребуется.

Рис. 3.6-43. Схема автогенератора на туннельном диоде с питанием от делителя напряжения

Рис. 3.6-44. Схема автогенератора на туннельном диоде с нелинейным сопротивлением в цепи питания

Все упомянутые выше способы стабилизации напряжения несколько усложняют схемы, а в ряде случаев увеличивают потребляемую мощность, поэтому широкого применения они не находят. В реальной аппаратуре туннельные диоды чаще всего применяются совместно с транзисторами. Известно, что у транзистора ток эмиттера сравнительно мало зависит от напряжения питания коллектора, особенно если смещение транзистора стабилизировано каким-либо способом. Поэтому при питании диода эмиттерным током транзистора можно получить выигрыш не только в стабильности, но и в экономичности. Последняя повышается здесь из-за того, что потери на верхнем плече делителя устраняются, а дополнительная мощность, потребляемая туннельным диодом, невелика.

На рис. 3.6-45, 3.6-46, 3.6-47 представлены три примера применения генератора на туннельном диоде. При проектировании таких генераторов следует стремиться получить максимальную добротность колебательного контура с тем, чтобы увеличить мощность, отдаваемую в нагрузку.

Рис. 3.6-45. Простейший передатчик на туннельном диоде

Рис. 3.6-46. Улучшенная схема передатчика на туннельном диоде

Рис. 3.6-47. Гетеродин на туннельном диоде

Для увеличения мощности можно также включить два или большее число диодов в схему генератора (рис. 3.6-48). При этом диоды лучше всего соединять по постоянному току последовательно. Тогда напряжение на нижнем сопротивлении делителя должно быть вдвое больше, чем для одного туннельного диода, т.е. потери на верхнем плече уменьшаются. Нужно иметь ввиду, что сопротивление нижнего плеча должно обязательно состоять из двух одинаковых сопротивлений, а их средняя точка должна быть соединена по постоянному току со средней точкой двух диодов. В противном случае, устойчивая работа двух соединенных последовательно диодов невозможна. По переменному току можно соединить диоды параллельно или последовательно. В схеме приведенной на рис. 3.6-48 каждый диод подключен к отдельной обмотке. Чтобы получить наибольшую мощность, связь каждого диода с контуром следует регулировать индивидуально.

Рис. 3.6-48. Автогенератор на двух туннельных диодах

Генератор на туннельном диоде может строиться и с применением кварцевого резонатора, задающего частоту колебаний. Пример такой схемы приведен на рис. 3.6-49.

Исторически туннельные диоды появились значительно позже, чем транзисторы и лампы. Малые габариты и вес, высокая надежность и экономичность обусловили быстрое расширение области их применения. Вольт-амперная характеристика у туннельного диода - типа N (рис. 7). Поэтому схема автогенератора получается просто: к диоду подключают параллельный контур по переменному току (рис. 8.44 б), а режим по постоянному току выбирают так, чтобы рабочая точка О оказалась на падающем участке характеристики (рис. 7).

Рис.7. Вольт-амперная характеристика и схема генератора на туннельном диоде

Режим по постоянному току должен обеспечиваться с учетом внутреннего сопротивления источника R i . Для этого необходимо решить систему двух уравнений:

Графическое решение системы показано на рисунке 8.44 а.

Рассмотрим два случая.

В первом случае, при крутизне наклона характеристики |S (U 0)| > 1/R i , существует три возможных состояния, удовлетворяющих уравнениям системы - точки А, О, Б. Анализ, с учетом емкости самого диода, показывает, что только точки А и Б, расположенные на нарастающих участках характеристики, являются устойчивыми. Если точка покоя (точка О) находится на участке характеристики с отрицательным наклоном, то состояние схемы будет неустойчивым и рабочая точка самопроизвольно смещается в одно из крайних положений (в точку А или точку Б).

Во втором случае, при крутизне наклона характеристики |S (U 0)| < 1/R i , существует лишь одно состояние, удовлетворяющее уравнениям - точка О. Оно оказывается устойчивым и поэтому рабочая точка может быть установлена на любом участке вольт-амперной характеристики с отрицательной крутизной, следовательно, фазовое условие самовозбуждения выполняется. Амплитудное условие самовозбуждения будет выполнено, если |S (U 0)| > G Э, где G Э - проводимость контура в точках подключения диода.

Частота колебаний равна

и может изменяться с помощью С К. Амплитуда колебаний изменяется путем изменения точки подключения диода к колебательному контуру. Если катушки L 1 и L 2 не связаны единым магнитным полем, то коэффициент включения контура равен

Если же катушки L 1 и L 2 образуют единую катушку с общим магнитным полем, то диод подключается к индуктивной ветви с коэффициентом включения, равным

где n 1 и n 2 - число витков в частях катушки, обозначенных на схеме L 1 и L 2 .

Блокировочная емкость С Б выбирается из условия

Достоинства схемы:

способность работать в очень широком диапазоне частот (от единиц килогерц до десятков гигагерц);

высокая стабильность параметров при изменении температуры в широких пределах;

низкий уровень собственных шумов;

малое потребление энергии от источников питания;

длительный срок службы;

малая чувствительность к воздействию радиации.

Недостаток схемы - малая выходная мощность, что обусловлено малыми интервалами токов и напряжений в пределах падающего участка характеристики (с отрицательной крутизной). Например, генератор на одном туннельном диоде с пиковым током до 10 мА обеспечивает мощность, не превышающую единиц милливатт. Для получения большей мощности необходимо применять диоды с большими пиковыми токами.

Наиболее просто с применением туннельных диодов строятся схемы автогенераторов. Так как туннельный диод представляет собой двухполюсник с отрицательным сопротивлением, устойчивым по напряжению, то при подключении к нему параллельного колебательного контура он может генерировать. При этом отрицательное сопротивление диода будет компенсировать потери, и в контуре могут возникнуть и поддерживаться незатухающие колебания. Обычные низкочастотные туннельные диоды хорошо работают на частотах, равных единицам мегагерц.

Более высокочастотные диоды, в которых уменьшена емкость перехода и индуктивность выводов, генерируют на частотах тысячи мегагерц. Однако из-за небольших величин участка вольтамперной характеристики диода с отрицательным сопротивлением мощность, отдаваемая им на любых частотах, составляет доли мВт. Чтобы форма генерируемых колебаний не искажалась, как правило, применяют частичное подключение диода к контуру генератора. В этом случае сопротивление потерь, приведенное к выводам диода, должно быть равно его отрицательному сопротивлению. В реальных схемах приведенное сопротивление потерь выбирают больше отрицательного. сопротивления туннельного диода с тем, чтобы гарантировать надежное возбуждение генератора при изменении температуры, питающего напряжения и частоты.

Учитывая, что параллельное сопротивление потерь в реальных колебательных контурах значительно превышает сопротивление туннельного диода, отвод приходится делать от незначительной части витков контура (рис. 1). На внутреннем сопротивлении источника смещения будет выделяться часть колебательной мощности, поэтому оно должно быть как можно меньше.


Рис. 1

Обычно туннельные диоды питаются от делителя напряжения, что приводит к неэкономному расходованию мощности питания. Действительно, для германиевых диодов напряжение смещения в режиме генерации равно 0,1-0,15 в, а минимальное напряжение подавляющего большинства химических источников тока составляет 1,2-2 В, поэтому и необходимо применять в цепи питания делители напряжения. При этом примерно 80-90% всей потребляемой мощности рассеивается на делителе. Исходя из соображений экономичности, для питания туннельных диодов целесообразно применять источники с возможно более низким напряжением. Выходное сопротивление делителя напряжения выбирают в пределах 5-10 Ом, и только в устройствах, где требуется наибольшая экономичность его повышают до 20-30 Ом. Отрицательное сопротивление туннельного диода должно превышать сопротивление делителя в 5-10 раз. Шунтировать столь малые сопротивления конденсаторами для уменьшения потерь высокочастотной энергии нецелесообразно, так как в ряде случаев это может привести к неустойчивой работе генератора, особенно, если режим его подбирался по максимуму отдаваемой мощности.

Отрицательное сопротивление туннельного диода сильно зависит от положения рабочей точки, так что при изменении питающего напряжения на 10% нормальная работа генератора может полностью нарушиться. Поэтому при питании диодов от химических источников тока - батарей, аккумуляторов, обеспечить их стабильную работу весьма трудно. Наиболее целесообразно питать их от окисно-ртутных элементов, напряжение которых незначительно меняется в процессе работы, а в ряде случаев приходится использовать предварительно стабилизированное напряжение или применять в делителе нелинейные сопротивления -в верхнем плече, стабилизирующие ток, а в нижнем - напряжение. Так, если в схеме автогенератора (рис. 2, а) вместо сопротивления R2 применить германиевый диод Д11 в прямом включении, как это показано на рис. 2, б, стабильность работы генератора улучшится и при изменении напряжения питания от 1,5 до 1 в никаких регулировок не потребуется.


Рис. 2

В приведенных схемах автогенераторов на частоту 465 кГц катушка L1 намотана на 4-секционном полистироловом каркасе диаметром 4 мм с сердечником из феррита Ф-1000 диаметром 2,8 и длиной 12 мм. Обмотка катушки содержит 220 витков провода ПЭВ 0,13 с отводом от 18 витка. Напряжение высокой частоты на контуре составляет 1 Вэфф.

Все упомянутые выше способы стабилизации несколько усложняют схемы, а в ряде случаев и увеличивают потребляемую мощность, поэтому широкого применения они не нашли. В аппаратуре туннельные диоды чаще всего применяются совместно с транзисторами. Известно, что у транзистора ток эмиттера сравнительно мало зависит от напряжения питания коллектора, особенно если смещение транзистора стабилизировано каким-либо способом. Поэтому, при питании диодов эмиттерным током транзистора, можно получить выигрыш не только в стабильности, но и в экономичности. Последняя повышается здесь из-за того, что потери на верхнем плече делителя устраняются, а дополнительная мощность, потребляемая туннельным диодом, невелика.

Помимо генераторов, настроенных на фиксированную частоту, туннельные диоды можно применить и в диапазонных генераторах. Правда, при этом приходится более тщательно подбирать связь диода с контуром, чтобы во всем перекрываемом диапазоне поддержать амплитуду колебании и мощность в нагрузке на заданном уровне. Примером такого использования туннельного диода может служить схема гетеродина для супергетеродинного приемника, описанного в журнале "Радио" № 5 за 1962 г. Схема гетеродина получается при этом даже проще, чем на транзисторе (рис. 3).


Рис. 3

Общее число витков в катушке L1 сохраняется, а для связи с туннельным" диодом поверх L1 со стороны ее заземленного конца наматывается обмотка L2, содержащая 10 витков провода ПЭЛШО 0,15. Обмотка связи с преобразователем L3 остается примерно прежней, но для наибольшей чувствительности число витков нужно заново подобрать. Емкости конденсаторов C1 и С2 остаются без изменения, Питается туннельный диод от общего источника. В этом случае сопротивление R2 должно быть равно 1,2 ком. Туннельный диод нужно выбрать с током максимума не более 1,5 мА. Более рационально для питания диода применить упомянутую выше схему стабилизации с помощью транзистора. Для этого усилитель НЧ переделывают по схеме, приведенной на рис. 4. Между транзистор рами усилителя НЧ вводится связь по постоянному току. Смещение на базу транзистора Т1 снимается с эмиттера транзистора Т2 через цепочку R4Д1, и сопротивления R2, R3. Возникающая при этом отрицательная обратная связь по току поддерживает ток эмиттера, а значит, и напряжение на сопротивлениях R2 и R3, почти постоянным при снижении питающего напряжения на 25-30% от номинальной величины (величину питающего напряжения лучше повысить до 9 В).


рис. 4

Для питания туннельного диода используется напряжение 2 в, подаваемое на делитель через сопротивление R2 (рис. 3), которое в этом случае берется равным 430 Ом. Налаживание начинают с проверки того, как изменяется напряжение на эмиттере транзистора Т2 при уменьшении питающего напряжения с 6 до 4,5 В или с 9 до 6 В. Если при этом напряжение изменится не более, чем на 5-10%, то установив напряжение питания равным 5,2 В (или 7,5 В при 9 В), переходят к настройке генератора. Для этого ротор переменного конденсатора С2 ставят в среднее положение и, регулируя величины сопротивлений R1 или R2 (рис. 3), добиваются максимальной амплитуды колебаний. Затем проверяют равномерность генерации по всему диапазону. Если в каких-либо его участках колебания срываются, следует на несколько витков увеличить обмотку катушки L2 и вновь проверить равномерность генерации при перестройке. Закончив настройку гетеродина, подбирают число витков обмотки связи гетеродина с преобразователем L3 до получения оптимальной чувствительности.

При проектировании генераторов на туннельных диодах следует стремиться получить максимальную добротность колебательного контура, с тем, чтобы увеличить мощность, отдаваемую в нагрузку. Для увеличения мощности можно также включить два или большее число диодов в схему генератора. При этом, как следует из рассмотрения энергетических соотношений, диоды выгодно соединять по постоянному току последовательно.. Тогда напряжение на нижнем сопротивлении делителя будет вдвое больше, чем для одного туннельного диода, и потери на верхнем плече уменьшаются. Нужно иметь ввиду, что сопротивление нижнего плеча должно обязательно состоять из двух одинаковых сопротивлений, а их средняя точка должна быть соединена по постоянному току со средней точкой двух диодов(рис.5). В противном случае, устойчивая работа двух последовательно соединенных диодов невозможна. По переменному току можно соединить диоды параллельно или последовательно. В схеме, приведенной на рис. 5 каждый диод подключен к отдельной обмотке. Чтобы получить наибольшую мощность, связь каждого туннельного диода с контуром следует регулировать индивидуально.


рис. 5

Можно использовать туннельные диоды и в схемах апериодических усилителей. Однако, как указывается в литературе, такие апериодические усилители в диапазонах длинных и средних волн оказываются мало практичными из-за трудности в разделении нагрузки и источника сигнала. Нужно учесть и то, что транзисторы при сравнимом потреблении мощности питания обладают большим усилением в реальных схемах по сравнению с туннельными диодами.

Резонансные усилители на туннельных диодах строить сравнительно несложно. Они могут быть выполнены, например, по схеме автогенератора, в котором коэффициент обратной связи недостаточен для возбуждения колебаний. Таким схемам присущи все недостатки регенеративных усилителей: нестабильность порога регенерации, возможность возбуждения при изменении нагрузки, сужение полосы пропускания при повышении усиления. Однако такие усилители могут работать достаточно устойчиво, если не стремиться получить от них максимальное усиление. Схема с таким применением туннельного диода приведена на рис. 6. На рисунке показана схема входной части приемника прямого усиления с ферритовой антенной. Известно, что для согласования сопротивления контура антенны с входным сопротивлением транзистора, коэффициент трансформации трансформатора, образованного обмотками катушек L1 и L2 делается много меньше единицы.


Рис. 6. Верхняя обкладка конденсатора C1 должна быть заземлена.

Это приводит к тому, что напряжение сигнала на базе транзистора оказывается в 15- 20 раз меньше, чем напряжение на контуре L1C1. В схеме, показанной рис. 6 коэффициент связи выбран значительно больше обычного и отвод к базе транзистора Т1 сделан от 1/5 общего числа витков катушки L1. В этом случае контур L1C1 оказывается сильно шунтированным, полоса его расширяется и чувствительность приемника падает. Однако при подключении туннельного диода к дополнительной обмотке L3 контур частично "разгружается", его затухание и полоса пропускания возвращаются к нормальной величине. Таким способом удается получить выигрыш в чувствительности приемника в 4-5 раз. Число витков обмотки L3 выбирается с таким расчетом, чтобы затухание контура компенсировалось не полностью, и усилитель не возбуждался. Однако, чтобы получить максимальную чувствительность, нужно подойти к порогу возбуждения как можно ближе, поэтому смещение туннельного диода сделано регулируемым. Обмотка катушки L1 содержит 200 витков провода ПЭЛШО 0,15, намотанных в один слой виток к витку на ферритовом стержне длиной 110 мм, диаметром 8,4 мм с отводом от 44 витка. Обмотка катушки L3 содержит 8-10 витков провода ПЭЛШО 0,15, она намотана вблизи заземленного конца катушки L1. Недостатком предложенной схемы является то, что коэффициент перекрытия входной цепи уменьшается, так как из-за увеличенного коэффициента связи сильней будет сказываться входная емкость транзистора T1. Кроме того, к емкости контура добавится пересчитанная емкость туннельного диода. Поэтому, если требуется достаточно большое перекрытие, целесообразно туннельный диод применять с минимальной емкостью.

Более выгодно применять регенеративные усилители на фиксированную частоту, например в усилителе ПЧ супергетеродина (рис. 7). Для этого на один из контуров ПЧ наматывают дополнительную обмотку для туннельного диода. Смещение диода лучше сделать стабилизированным. Это позволит подойти достаточно близко к порогу регенерации и получить выигрыш в усилении в 8-10 раз. Нужно учитывать, что полоса пропускания усилителя ПЧ резко сужается, если включение туннельного диода не было заранее предусмотрено. В ряде случаев при подключении диода усилитель может возбудиться, хотя коэффициент связи недостаточен для генерации. Это происходит потому, что коэффициент усиления каскада с подключенным туннельным диодом становится больше максимальной устойчивой величины.


рис. 7

Экспериментируя с туннельными диодами, нужно избегать бросков тока и напряжения, иначе диод может выйти из строя. Подключать и отключать диод следует только при выключенном питании.

Литература

  1. С. Г. Мадоян, Ю. С.Тиховцев. А. Ф. Трутко - Туннельный диод. Сборник "Полупроводниковые приборы и их применение" под редакцией Федотова Я. А. Вып. 7.
  2. К. С. Ржевкин "Туннельный диод" Массовая радиобиблиотека" выпуск 452, Госэнергоиздат, 1962 г.
  3. Акчурин Э. А., Стыблик В. А. Генераторы на туннельных диодах с повышенной мощностью, Радиотехника, 1963 г. т. 18, № 11.
  4. Williams, Hamilton How to make tunnel diodes even more useful, Electronics, June 7. 1963, V 36. № 23.

Читайте и пишите полезные