Ардуино управление яркостью светодиода с помощью потенциометра. Arduino проекты. Уроки, программирование, управление и подключение ардуино. Для дополнительного задания

На этом примере Вы научитесь изменять яркость светодиода, используя резисторы с различным сопротивлением.

Для данного примера вам понадобятся

1 светодиод диаметром 5 мм

1 резистор на 270 Ом (красный, фиолетовый, коричневый)

1 резистор на 470 Ом (желтый, фиолетовый, коричневый)

1 резистор на 2.2 кОм (красный, красный, красный)

1 резистор на 10 кОм (коричневый, черный, оранжевый)

Светодиоды - общие сведения

Светодиоды отлично служат в устройствах для разного рода индикации. Они потребляют мало электричества и при этом долговечны.

В данном примере мы используем самые распространенные светодиды диаметром 5 мм. Также распространены светодиоды диаметром 3 миллиметра, ну и большие светодиоды диаметром 10 мм.

Подключать светодиод напрямую к батарейке или источнику напряжения не рекомендуется. Во-первых, надо сначала разобраться, где именно у светодиода отрицательная и положительная ноги. Ну а во вторых, необходимо использовать токоограничивающие резисторы, иначе светодиод очень быстро перегорит.

Если вы не будете использовать резистор со светодиодом, последний очень быстро выйдет из строя, так как через него будет проходить слишком большое количество тока. В результате светодиод нагреется и контакт, генерирующий свет, разрушится.

Различить позитивную и негативную ноги светодиода можно двумя способами.

Первый – позитивная нога длиннее.

Второй – при входе в корпус самого диода на коннекторе негативной ноги есть плоская кромка.

Если вам попался светодиод, на котором плоская кромка на более длинной ноге, длинная нога все равно является позитивной.

Резисторы - общие сведения

Resist – сопротивление (англ.)

Из названия можно догадаться, что резисторы сопротивляются потоку электричества. Чем больше номинал (Ом) резистора, тем больше сопротивление и тем меньше тока пройдет по цепи, в которой он установлен. Мы будем использовать это свойство резисторов для регулирования тока, который проходит через светодиод и, таким образом, его яркость.

Но сначала погорим немного о резисторах.

Единицы, в которых измеряется сопротивление – Ом, которые во многих источниках обозначаются греческой буквой Ω – Омега Так как Ом – маленькое значение сопротивления (практически незаметное в цепи), мы часто будем оперировать такими единицами как кОм - килоом (1000 Ом) и МОм мегаом (1000000 Ом).

В данном примере мы будем использовать резисторы с четырьмя различными номиналами: 270 Ω, 470 Ω, 2.2 кΩ и 10 кΩ. Размеры этих резисторов одинаковы. Цвет тоже. Единственное, что их различает – цветные полоски. Именно по этим полоскам визуально определяется номинал резисторов.

Для резисторов, у которых три цветные полоски и последняя золотистая, работают следующие соответствия:

Коричневый 1

Красный 2

Оранжевый 3

Зеленый 5

Фиолетовый 7

Первые две полоски обозначают первые 2 числовых значения, так что красный, филетовый означает 2, 7. Следующая полоска – количество нулей, которые необходимо поставить после первых двух цифр. То есть, если третья полоска коричневая, как на фото выше, будет один нуль и номинал резистора равен 270 Ω.

Резистор с полосками коричневого, черного, оранжевого цветов: 10 и три нуля, так что 10000 Ω. То есть, 10 кΩ.

В отличии от светодиодов, у резисторов нет положительной и и отрицательной ног. Какой именно ногой подключать их к питанию/земле – неважно.

Схема подключения

Подключите в соответствии со схемой, приведенной ниже:

На Arduino есть пин на 5 В для питания периферийных устройств. Мы будем его использовать для питания светодиода и резистора. Больше вам от платы ничего не потребуется, только лишь подключить ее через USB к компьютеру.

С резистором на 270 Ω, светодиод должен гореть достаточно ярко. Если вы вместо резистора на 270 Ω установите резистор номиналом 470 Ω, светодиод будет гореть не так ярко. С резистором на 2.2 кΩ, светодиод должен еще немного затухнуть. В конце-концов, с резистором 10 кΩ, светодиод будет еле виден. Вполне вероятно, чтобы увидеть разницу на последнем этапе вам придется вытянуть красный переходник, использовав его в качестве переключателя. Тогда вы сможете увидеть разницу в яркости.

Кстати, можно провести этот опыт и при выключенном свете.

Разные варианты установки резистора

В момент, когда к одной ноге резистора подключено 5 В, вторая нога резистора подключается к позитивной ноге светодиода, а вторая нога светодиода подключена к земле. Если мы переместим резистор так, что он будет располагаться за светодиодом, как показано ниже, светодиод все равно будет гореть.

Мигание светодиодом

Мы можем подключить светодиод к выходу Arduino. Переместите красный провод от пина питания 5V к D13, как это показано ниже.

Теперь загрузите пример “Blink”, который мы рассматривали . Обратите внимание, что оба светодиода – встроенный и установленный вами внешний начали мигать.

Давайте попробуем использовать другой пин на Arduino. Скажем, D7. Переместите коннектор с пина D13 на пин D7 и измените следующую строку вашего кода:

Загрузите измененный скетч на Arduino. Светодиод продолжит мигать, но на этот раз, используя питание от пина D7.

Как рождаются программы

Это будет немного не обычная статья, в ней я попробую не просто показать готовый код, который что-то делает, а покажу как рождается устройство и прошивка для него. Мы рассмотрим логику работы программы и то как эту логику построить.

Сегодня мы с вами будем решать следующую задачу: есть 2 светодиода их надо подключить к Arduino и реализовать возможность регулировать яркость их горения.

Приступим!

Первым делом надо продумать как будет выглядеть наше устройство и что нам понадобится для его реализации, нам надо чем то регулировать яркость светодиодов и видеть в каком режиме сейчас работают светодиоды для этого отлично подходит lcd shield который мы рассматривали в прошлой статье .

Теперь нам осталось подключить светодиоды, для этого отлично подходит так называемый бредборд, это пластиковая штуковина (не знаю как ее по другому назвать) в которую без пайки можно подключить провода от Arduino и другие электронные компоненты, что очень удобно когда ты точно не знаешь как будет выглядеть готовое устройство или схема нужно всего на несколько запусков. Китайцы клепают огромное количество их разновидностей, я лично пользуюсь таким:

Для простоты понимания как он устроен внутри я приложу схему внутренних соединений:

Подключение светодиодов к Arduino

Многие сейчас скажут: что сложного в подключении светодиода, это же лампочка! И будут не правы, светодиод - это далеко не простая лампочка, а полупроводниковый световой прибор. Который питается не напряжением как обычная лампочка, а током и если ток превысит допустимые значения, то светодиод начнет деградировать, его яркость будет уменьшатся что станет заметно через некоторое время, зависящее от мощности протыкаемого тока или, вообще моментально сгорит.

Как избежать порчи светодиода из-за большого тока? Все очень просто: нужно использовать токоограничивающий резистор, который надо рассчитывать для каждого светодиода в зависимости от его характеристик. Расчет резисторов для светодиода - это тема для отдельной статьи и сегодня мы не будем углубляться в эту тему так как скорей всего вы не знаете характеристик светодиода, который вы где-то нашли. На этот случай я использую маленькое правило: если светодиод не яркий, то я запитываю его через резистор сопротивлением от 220 до 400 ом в зависимости от того какой резистор был под рукой. Главное запомнить правило – лучше больше чем меньше. При большем сопротивлении чем требуется светодиоду, он просто будет гореть тусклее нормы.

Теперь надо определится как регулировать яркость светодиода, для этого можно использовать переменные резисторы что в принципе исключит интерактивную регулировку и по этому мы не будем использовать данный способ в этой статье. Мы будем использовать ШИМ реализованный на плате Arduino.

Что такое ШИМ

ШИМ (широтно-импульсная модуляция) – это изменение скважности сигнала на определенном отрезке времени. Шим сигнал имеет следующий вид по сравнению с постоянным сигналом:

На этой картинке 100% рабочего цикла это отсутствие ШИМ как такового, сигнал идет без изменений, как будто вывод просто подключен к 5 вольтам.

0% рабочего цикла это отсутствие какого-либо сигнала, как будто провод никуда не подключен.

Остальные режимы работы - это быстрое переключение режимов работы что заставляет светодиод как бы моргать с большой скоростью не заметной глазу человека (100 раз в секунду) что и заставляет его гореть с не полной яркостью. Arduino в зависимости от версии используемого чипа имеет разное количество ШИМ выходов, на плате они помечены знаком ~ из прошлой статьи мы знаем что это 6 выходов 3, 5, 6, 9, 10, и 11 мы будем использовать 10 и 11 выводы.

Давайте наконец то подключим светодиоды к плате. Надеваем на Arduino наш lcd shield и собираем следующею схему для которой нам понадобится бредборд, 2 светодиода, 2 резистора на 250 ом, и 3-4 провода папа- папа. Схема будет иметь следующий вид:

И не забываем, что у светодиода есть полярность, длинная или кривая (как на схеме) ножка светодиода - это плюс который и подключается через резистор.

На этом я наверно закончу первую часть статьи, во второй части мы займемся именно проработкой логики работы и написанием кода программ. Всем добра!

Теперь же разберемся с многоцветным светодиодом, который часто называют сокращенно: RGB-светодиод . RGB — это аббревиатура, которая расшифровывается как: Red — красный, Green — зеленый, Blue — синий. То есть внутри этого устройства размещается сразу три отдельных светодиода. В зависимости от типа, RGB-светодиод может иметь общий катод или общий анод.

1. Смешение цветов

Чем RGB-светодиод, лучше трех обычных? Всё дело в свойстве нашего зрения смешивать свет от разных источников, размещенных близко друг к другу. Например, если мы поставим рядом синий и красный светодиоды, то на расстоянии несколько метров их свечение сольется, и глаз увидит одну фиолетовую точку. А если добавим еще и зеленый, то точка покажется нам белой. Именно так работают мониторы компьютеров, телевизоры и уличные экраны. Матрица телевизора состоит из отдельно стоящих точек разных цветов. Если взять лупу и посмотреть через нее на включенный монитор, то эти точки можно легко увидеть. А вот на уличном экране точки размещаются не очень плотно, так что их можно различить невооруженным глазом. Но с расстояния несколько десятков метров эти точки неразличимы. Получается, что чем плотнее друг к другу стоят разноцветные точки, тем меньшее расстояние требуется глазу чтобы смешивать эти цвета. Отсюда вывод: в отличие от трех отдельностоящих светодиодов, смешение цветов RGB-светодиода заметно уже на расстоянии 30-70 см. Кстати, еще лучше себя показывает RGB-светодиод с матовой линзой.

2. Подключение RGB-светодиода к Ардуино

Поскольку многоцветный светодиод состоит из трех обычных, мы будем подключать их отдельно. Каждый светодиод соединяется со своим выводом и имеет свой отдельный резистор. В уроке мы используем RGB-светодиод с общим катодом, так что провод к земле будет только один. Принципиальная схема
Внешний вид макета

3. Программа для управления RGB-светодиодом

Составим простую программу, которая будет по очереди зажигать каждый из трех цветов. const byte rPin = 3; const byte gPin = 5; const byte bPin = 6; void setup() { pinMode(rPin, OUTPUT); pinMode(gPin, OUTPUT); pinMode(bPin, OUTPUT); } void loop() { // гасим синий, зажигаем красный digitalWrite(bPin, LOW); digitalWrite(rPin, HIGH); delay(500); // гасим красный, зажигаем зеленый digitalWrite(rPin, LOW); digitalWrite(gPin, HIGH); delay(500); // гасим зеленый, зажигаем синий digitalWrite(gPin, LOW); digitalWrite(bPin, HIGH); delay(500); } Загружаем программу на Ардуино и наблюдаем результат. Your browser does not support the video tag. Немного оптимизируем программу: вместо переменных rPin, gPin и bPin применим массив. Это нам поможет в следующих заданиях. const byte rgbPins = {3,5,6}; void setup() { for(byte i=0; i<3; i++) pinMode(rgbPins[i], OUTPUT); } void loop() { digitalWrite(rgbPins, LOW); digitalWrite(rgbPins, HIGH); delay(500); digitalWrite(rgbPins, LOW); digitalWrite(rgbPins, HIGH); delay(500); digitalWrite(rgbPins, LOW); digitalWrite(rgbPins, HIGH); delay(500); }

4. Семь цветов радуги

Теперь попробуем зажигать одновременно по два цвета. Запрограммируем такую последовательность цветов:
  • красный
  • красный + зеленый = желтый
  • зеленый
  • зеленый + синий = голубой
  • синий
  • синий + красный = фиолетовый
Оранжевый цвет мы для упрощения опустили. Так что, получилось шесть цветов радуги 🙂 const byte rgbPins = {3,5,6}; const byte rainbow = { {1,0,0}, // красный {1,1,0}, // жёлтый {0,1,0}, // зелёный {0,1,1}, // голубой {0,0,1}, // синий {1,0,1}, // фиолетовый }; void setup() { for(byte i=0; i<3; i++) pinMode(rgbPins[i], OUTPUT); } void loop() { // перебираем все шесть цветов for(int i=0; i<6; i++){ // перебираем три компоненты каждого из шести цветов for(int k=0; k<3; k++){ digitalWrite(rgbPins[k], rainbow[i][k]); } delay(1000); } } В результате работы программы получается: Your browser does not support the video tag.

5. Плавное изменение цвета

Мы не зря подключили RGB-светодиод к выводам 3, 5 и 6. Как известно, эти выводы позволяют генерировать ШИМ сигнал разной скважности. Другими словами, мы можем не просто включать или выключать светодиод, а управлять уровнем напряжения на нем. Делается это с помощью функции analogWrite . Сделаем так, что наш светодиод будет переходить между цветами радуги не скачкообразно, а плавно. const byte rgbPins = {3,5,6}; int dim = 1; void setup() { for(byte i=0; i<3; i++){ pinMode(rgbPins[i], OUTPUT); } // начальное состояние - горит красный цвет analogWrite(rgbPins, 255); analogWrite(rgbPins, 0); analogWrite(rgbPins, 0); } void loop() { // гасим красный, параллельно разжигаем зеленый for(int i=255; i>=0; i--){ analogWrite(rgbPins, i/dim); analogWrite(rgbPins, (255-i)/dim); delay(10); } // гасим зеленый, параллельно разжигаем синий for(int i=255; i>=0; i--){ analogWrite(rgbPins, i/dim); analogWrite(rgbPins, (255-i)/dim); delay(10); } // гасим синий, параллельно разжигаем красный for(int i=255; i>=0; i--){ analogWrite(rgbPins, i/dim); analogWrite(rgbPins, (255-i)/dim); delay(10); } } Переменная dim определяет яркость свечения. При dim = 1 имеем максимальную яркость. Загружаем программу на Ардуино. Your browser does not support the video tag.

Задания

  1. Индикатор температуры. Добавим в схему термистор и подключим его к аналоговому входу. Светодиод должен менять свой цвет в зависимости от температуры термистора. Чем ниже температура, тем более синий цвет, а чем выше, тем более красный.
  2. RGB лампа с регулятором. Добавим в схему три переменных резистора и подключим их к аналоговым входам. Программа должна непрерывно считывать значения резисторов и менять цвет соответствующей компоненты RGB-светодиода.

На предыдущих уроках мы познакомились с простейшими схемами — сборкой и . Сегодня собираем модель с потенциометром (переменным резистором) и светодиодом. Такая модель может использоваться для управления роботом.

Потенциометр — это переменный резистор с регулируемым сопротивлением. Потенциометры используются в робототехнике как регуляторы различных параметров — громкости звука, мощности, напряжения и т.п. В нашей модели от поворота ручки потенциометра будет зависеть яркость светодиода. Это также одна из базовых схем.

Видео-инструкция сборки модели:

Для сборки модели нам потребуется:

  • плата Arduino (или аналоги);
  • Breadboard;
  • 6 проводов и/или перемычек “папа-папа”;
  • светодиод;
  • потенциометр (переменный резистор);
  • резистор на 220 Ом;
  • среда Arduino IDE, которую можно скачать с сайта Arduino .

Что понадобится для подключения потенциометра и светодиода на Arduino?

Схема подключения модели Arduino с потенциометром и светодиодом:

Схема подключения модели Arduino с потенциометром и светодиодом

Для работы этой модели подойдет следующая программа (программу вы можете просто скопировать в Arduino IDE):

// даём имена пинов со светодиодом
// и потенциометром
#define led 9
#define pot A0
void setup()
{
// пин со светодиодом - выход
pinMode(led, OUTPUT);
// пин с потенциометром - вход
pinMode(pot, INPUT);
}
void loop()
{
// объявляем переменную x
int x;
// считываем напряжение с потенциометра:
// будет получено число от 0 до 1023
// делим его на 4, получится число в диапозоне
// 0-255 (дробная часть будет отброшена)
x = analogRead(pot) / 4;
// выдаём результат на светодиод
analogWrite(led, x);
}

Так выглядит собранная модель Arduino потенциометра со светодиодом:

Модель Arduino с потенциометром и светодиодом в собранном виде

На этом третий урок “Arduino для начинающих” закончен. Продолжение следует!

Посты по урокам:

  1. Первый урок: .
  2. Второй урок: .
  3. Третий урок: .
  4. Четвертый урок: .
  5. Пятый урок: .
  6. Шестой урок: .
  7. Седьмой урок: .
  8. Восьмой урок: .
  9. Девятый урок:

Потенциометр — это переменный резистор, который при повороте ручки изменяет свое сопротивление.

Что требуется для проекта:

  • Arduino UNO или любой другой аналог
  • Макетная плата
  • Потенциометр
  • Светодиод
  • Резистор 220 Ом

Схема подключения на макетной плате.

Для того, чтобы регулировать яркость светодиода, подключим его к разъему, который поддерживает ШИМ, в нашем случае это цифровой пин 3. Разъемы VCC и GND потенциометра подключаем к рельсе питания и земли макетной платы. Разъем A0 подключаем к аналоговому пину A0.

После удачной сборки схемы загружаем данный скетч:

#define LED 3 #define POT A0 void setup() { pinMode(LED, OUTPUT); //настройка пина в режим выхода pinMode(POT, INPUT); //настройка пина в режим входа } void loop() { //заявляем целочисленные переменные int turn, brightness; //считываем в turn напряжение потенциометра, его значения //будут варьироваться от 0 до 1023 turn = analogRead(POT); //в переменную brightness записываем значение turn, //деленное на 4. Будет принимать значения от 0 до 255 brightness = turn / 4; //включаем светодиод с яркостью, равной значению brightness analogWrite(LED, brightness); }

Теперь попробуем написать код для этой же схемы, но на чистом СИ в среде AtmelStudio 7. Выглядеть это будет так.

#include int main(void) { //Настроим нужные нам пины МК на входы и выходы. DDRC = 0<

Теперь попробуем разобраться с этими двумя примерами. Дело в том, что среда Arduino задумывалась для быстрого старта начинающим. Если надо помигать светодиодом или пощелкать реле, то это можно осуществить за считанные минуты. Среда Arduino полностью изолированна от железа микроконтроллера и поэтому в ней все осуществляется через функции, которые написаны разработчиками данного софта. Эти функции и их внутренности сокрыты в недрах программы. Обычному пользователю остается только вызывать нужные функции для настроек аппаратных узлов МК. Казалось бы это намного упрощает программирование. В принципе это так и есть. Поэтому среда и платы Arduino очень популярны среди начинающих любителей проектов на МК. Однако есть и минусы, например те, кто программируют Arduino, не могут запрограммировать микроконтроллеры, которые не поддерживает среда Arduino IDE. Например, запрограммировать любую модель МК Attiny AVR представляется уже невозможным. Да и другие модели Atmega, которых нет в платах Arduino, тоже остаются за бортом. В принципе если проекты не особо сложные, так побаловатся, то и среды Arduino достаточно. Если же надо что то большое и сложное, то тут конечно рулит чистый СИ. Но тогда придется разбираться в регистрах МК, в том как работают те или иные узлы МК. Надо читать документацию, изучить и понимать сам СИ. Однако если у вас уже есть опыт написание скетчей в среде Arduino, то со временем разобраться в СИ тоже будет возможно.

Теперь попробуем рассмотреть код на СИ и поймем что это не так страшно.

К примеру строка #include
подключает заголовочный файл в котором выбирается наш нужный МК. Среда AtmelStudio 7 делает это автоматически при создании нового проекта.

DDRC = 0<PORTC= 0<DDRD = 1< PORTD = 0<

Эти строки настраивают нужные нам выводы платы Arduino на вход или на выход. PC0 это то же что и А0 на плате, этот вывод надо настроить на вход, так как к ней подключаетя потенциометр. И с этого вывода будет считываться значение АЦП.

Регистром ADMUX и ADCSRA настраиваем сам узел АЦП в нужный нам режим. В частности настраиваем так что АЦП будет автоматически постоянно считывать значение с вывода А0 и сохранять это значение в регистре ADCH .

В МК есть аппаратные таймеры, это тоже такие узлы которые дают возможность работать с ШИМ выводами, например ШИМ вывод ~3 к которому подключен светодиод, принадлежит внутреннему Timer2 . В Atmega 328 есть еще Timer0 и Timer1 . Так вот с помощью регистров TCCR2A и TCCR2B , настроим наш Timer2 на режим FAST_PWM , это дает нам возможность работать с выводом ~3 платы Arduino. Ну и в главном цикле программы сразу передаем значение из АЦП в наш Timer2 . Делается это одной строчкой OCR2B=ADCH .

Вопрос только в том как залить в нашу ардуину код написанный на СИ в AtmelStudio? Сделать это можно с помощью прямо из среды AtmelStudio. Правда перед этим надо из платы ардуино этим же программатором считать и сохранить загрузчик. Иначе потом плата ардуино не сможет работать со средой Arduino. В любое время можно обратно программатором вернуть загрузчик на место.